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INTRODUCTION

In February 1992, the Bureau of Economic Geology (BEG) joined representatives of the
Canadian River Municipal Water Authority (CRMWA) and Lee Wilson & Associates (LWA) in
conducting a survey of water quality along the Canadian River between Ute Reservoir, New
Mexico, and Lake Meredith, Texas (fig. 1). This report describes evaporite dissolution patterns
in Permian salt-bearing strata in the Ute Reservoir area, discusses conductivity and flow trends
observed during the river survey, and concludes with a discussion of chemical analyses of waters

sampled from the Canadian River, its tributaries, and adjacent pools and seeps.

EVAPORITE DISSOLUTION PATTERNS IN PERMIAN SALT-BEARING

STRATA IN UTE RESERVOIR AREA
Introduction

Dissolution of bedded halite and gypsum from Permian strata has occurred in the Canadian
River valley in central Quay County, New Mexico. Approximately 340 ft of halite has been
dissolved from the lower San Andres Formation and from the top of the Glorieta Formation to
depths of 1,100 ft beneath the Canadian River (fig. 2). An additional 35S ft of halite has been
dissolved from the lower San Andres unit 5 and upper San Andres Formation from higher
elevations 10 mi south of the Canadian River. Gypsum probably has been dissolved from beds
in the Seven Rivers Formation (Artesia Group) in the shallow subsurface of the Canadian River
Valley. Release of calcium and sulfate ions probably also occurred in the dissolution zone during
hydration of anhydrite to gypsum.

Areas of past and possibly continuing halite dissolution can be identified on regional
structural cross sections through parts of eastern New Mexico and the Texas Panhandle
(Gustavson and others, 1980; Gustavson and Finley, 1985; Hydro Geo Chem, Inc., 1985;

McGookey and others, 1988). More detailed cross sections through the area of Ute Reservoir



and Revuelto Creek (figs. 2 and 3; plates 1 and 2) were constructed during the present study to
investigate the depths and possible pathways of ground-water circulation. The cross sections
identify areas where large amounts of halite are present and may be subject to modern sait
dissolution. These areas of preserved halite are potential contributors to the solute load of the
Canadian River.

Subsurface data used in this study were extracted from (1) commercial wireline logs and
sample logs, and (2) lithologic logs of three cores drilled east of the Ute Dam (U.S. Bureau of
Reclamation, 1979, 1984). Criteria for recognition of halite on wireline logs include
(1) increasing borehole diameter, as shown on caliper logs, (2) low gamma-ray response, and
(3) low density, low porosity, or high sonic velocity. Siliciclastic/halite mixtures that result from
interbedding or chaotically admixed mud and halite are recognized by responses intermediate
between those of halite and siliciclastic mudstones and siltstones. Criteria that indicate past
halite dissolution in the Ute Reservoir area are (1) thinning of halite-bearing units in sections
where thicknesses of other lithologies do not change, (2) decreased regional structural dip or
dip reversal of strata above areas of thin or missing halite, and (3) variable sonic velocity and
cycle-skipping (a process by which some of the first arrivals of a sonic wave pulse are lost,
resulting in anomalously long apparent travel times through some intervals, as is typically
caused by attenuation of sonic waves in fractured zones; see Schiumberger, 1989, p. S2t0 5-3)

(figs. 2 and 3; plates 1 and 2).

Stratigraphy

The Canadian River flows west to east between the subsurface structural elements of the
Tucumcari Basin and Bravo Dome (see inset on plates) (Foster and others, 1972; Budnik, 1989;
Ewing, 1990). Permian units crop out only locally in the Canadian River valley in Oldham
County, Texas (Eifler and others, 1983) and dip gently to the south in the subsurface. Permian

evaporites have been studied extensively in the Palo Duro Basin of the Texas Panhandle and



their log facies identified in stratigraphic cross sections (Handford and others, 1981; Presley,
1981). The base of the Permian section, where it unconformably onlaps Precambrian uplifts,
consists of dominantly siliciclastic units including coarse-grained arkoses known as granite wash,
the Red Cave Formation, lower Clear Fork Group, and Tubb Formation (plates 1 and 2).
Overlying these are cyclic evaporites containing thick halite units interbedded with carbonate,
anhydrite and fine-grained siliciclastic mudstones and sandstones, including the upper Clear
Fork Group, Glorieta Formation, and San Andres Formation (figs. 2 and 3; plates 1 and 2). Updip
siliciclastic-halite units of the Artesia Group (Queen-Grayburg and Seven Rivers Formations)
contain thin, regionally traceable anhydrite beds (figs. 2 and 3; plates 1 and 2). The top of the
Permian section is characterized by depositional pinch-out of evaporites into siliciclastic rocks
in the Salado and Alibates Formations. The uppermost Permian unit is the siliciclastic Dewey
Lake Formation. The Permian strata are truncated toward the north by the erosional
unconformity beneath the Triassic Dockum Group (plate 1) (Murphy, 1987). Jurassic and
Cretaceous units in the northwestern parts of the study area (Eifler and others, 1983) are
truncated by an erosional unconformity beneath the Tertiary Ogallala Formation and

Quaternary Blackwater Draw Formation (plate 1).

Evaporite Dissolution Patterns

Halite Dissolution

The following variations in halite distribution were determined from logs and constrain
areas where halite dissolution has occurred (figs. 2 and 3; plates 1 and 2). There is no evidence
of halite in the Red Cave Formation, Lower Clear Fork Group, or Tubb Formation beneath the
study area; these strata are characterized by siliciclastic-dominated facies that were probably
deposited in an environment proximal to the ancestral Rocky Mountains, away from areas of
evaporite precipitation. Halite units are present in the upper Clear Fork Group and are

laterally continuous through the study area. Halite units are also present in the Glorieta



Formation, but the uppermost halite beds are missing from beneath the Canadian River valley,
presumably because of dissolution.

Thick bedded halite units appear in the San Andres Formation in the Tucumcari Basin, but
progressively disappear northward and are completely dissolved from beneath the Canadian
River valley (figs. 2 and 3; plates 1 and 2). The thickness of the interval between the top of the
San Andres Formation and the base of Lower San Andres unit S decreases from 570 ft at the
Quay 14 well, 21 mi south of the Canadian River, to 215 ft at the Quay 13 well, 6 mi south of
the Canadian River (fig. 2; plate 1). The thickness of the lower part of the San Andres
Formation (from the top of San Andres unit 4 to the base of halite in the upper Glorieta
Formation) decreases from 540 ft at Quay 13 to 200 ft beneath the Canadian River (fig. 2;
plate 1). The thickness decrease of almost 700 ft is interpreted to be entirely the result of
halite dissolution. The opposite interpretation (that thinning reflects the original depositional
pattern) is contradicted by the observation that individual San Andres carbonate and anhydrite
units can be correlated further to the north with only very gradual depositional thinning and
pinch-out. The interpretation that dissolution of halite has resulted in subsidence of the
overlying strata is suggested by an abrupt decrease in the regional dip of the units above the
missing halite and by cycle-skipping on sonic logs (suggesting fracturing). Thick carbonate beds
in the lower San Andres Formation and sandstones at the top of the Glorieta Formation have
high porosity in areas where halite has been dissolved and may serve as zones of enhanced
flow and conduits for transmission of fresh waters into zones of preserved halite. Development
of highly porous beds as a result of dissolution of halite cements has been observed in the
shallow subsurface San Andres in the eastern Texas Panhandle (Hovorka and Granger, 1988).

Halite occurs within the Artesia Group in the southern part of the study area in mixed
halite-siliciclastic beds and as separate halite interbeds. Halite has been dissolved from the
mixed halite-siliciclastic beds in the Queen-Grayburg and Seven Rivers Formations beneath the
Canadian River Valley, leaving strata dominated by siliciclastic material. The siliciclastic

component thins by 25 percent, from 240 ft at the Quay 13 well to 180 ft over the Bravo



Dome at the Harding 7 well (fig. 2; plate 1). This thinning suggests that the depositional
environment changed significantly toward the Bravo Dome, where subsidence rates were
slower than in basin areas. Further south, at the Quay 14 well, the thickness and gamma-ray
character of the Artesia Group is preserved but the sonic log response indicates that the unit
may be highly fractured. This suggests that partial or incipient halite dissolution has occurred in
this area. Removal of minor amounts (less than 15 ft) of upper San Andres halite beneath
Queen-Grayburg sandstones was recognized in central Quay County 30 mi south of the
Canadian River, ahead of the main dissolution front. This intrastratal halite dissolution
demonstrates that the presence of highly permeable units within the evaporite section can

promote hydrologic circulation and locally enhance the halite dissolution process.

Anhydrite and Gypsum Dissolution

Partial dissolution of anhydrite and the eventual complete dissolution of gypsum both
contribute to the solute load of the Canadian River. Calcium sulfate dissolution can occur when
anhydrite comes in contact with low-salinity water and is hydrated to gypsum. In the
subsurface, this hydration generally proceeds without a major volume increase. However,
because the molar volume of gypsum (~75 cm3) is much greater than that of anhydrite
(~46 cm3), a volume-for-volume replacement of anhydrite by gypsum requires removal of some
calcium sulfate.

Units characterized by low gamma-ray response and interpreted as gypsum (or anhydrite)
beds can be traced within the Seven Rivers Formation throughout the study area. However, no
gypsum beds were noted on the lithologic logs of cores from holes drilled into the upper part of
the Artesia Group just downstream from Ute Dam (DH1 and DH2, plate 2). Note that regional
correlation during this study indicates that only the upper part of the Artesia Group was
penetrated by these holes, contrary to the original interpretations indicated on the logs—see

U.S. Bureau of Reclamation (1979, 1984). The absence of gypsum beds in these cores may



indicate that gypsum was dissolved in near-surface environments in the Canadian River Valley.
Extensive gypsum dissolution has been documented in very shallow subsurface environments

in the San Andres Formation in the eastern Texas Panhandle (Hovorka and Granger, 1988).

RESULTS OF FEBRUARY 1992 RIVER CONDUCTIVITY AND FLOW SURVEY
Introduction

The Canadian River water quality survey described here required 9 field days
(February 10-18, 1992) and covered a distance of about 150 mi. The survey terminated at
Chicken Creek, about 4 mi upstream from Lake Meredith (fig. 1). BEG personnel measured
conductivity and water temperature, chloride concentration, and alkalinity, and collected
samples of waters from the Canadian River, from flowing tributaries, and from isolated pools in
the riverbed and in several nonflowing tributaries (figs. 1, 4, and S; tables 1 and 2). CRMWA and
LWA personnel measured conductivity, water temperature, chloride and sulfate concentrations,
and pH, and also measured flows in the river and in flowing tributaries (tables 3 and 4). CRMWA
staff returned on February 24 and 25 to collect additional flow and chemistry data at closely
spaced intervals along one segment of the river where data from the survey 11 days earlier
indicated a substantial increase in flow (between and including survey sites S7 and 67; figs. 1
and S; table 3).

By prior arrangement, gates at Ute Dam were held closed during the survey, so that nd
water was directly released from Ute Reservoir; water in the Canadian River during the survey
period was contributed entirely by leakage through the dam and its workings, by baseflow and
stormflow(?), by inflow from tributaries, and by minor flows from several discrete, small springs.

The survey area was limited to the river, the riverbed and its banks, and tributary mouths.
Surveyors did not venture onto adjacent lands to sample wells or attempt to dig to water tables
in dry tributary streambeds because express permission had not been granted to enter those

areas and because the pace of the survey did not allow time for such activities. Spacing between




survey sites varied: (1) average spacing between stops in the first 7 mi below Ute Reservoir was
about 0.15 mi (sites O through 43, spacing up to 0.4 mi); (2) average spacing along the next 18
mi of the river was about 1 mi (sites 43 through 61, spacing 0.4 to 1.5 mi); and (3) average
spacing along the remaining length was about 3 mi (sites 61 through 103, spacing 0.2 to 5.7 mi)
(see figs. 1, 4, and S; tables 1-4).

Conductivity and water temperature were measured using a Yellow Springs Instrument
model 33 S-C-T conductivity meter. The instrument incorporates an electronic temperature
correction so that conductivity readings are expressed as equivalent conductivity at 77° F.

Salinity was measured in the field using Quantab chloride titrator strips (for
Cl-<6,000 ppm) (see table 6). The indicator strips proved to be fairly accurate, giving only
slightly higher readings than laboratory measurements (fig. 6). Salinity can also be judged
indirectly from conductivity measurements, although it is a less reliable technique. The line of
best fit on a plot of laboratory-determined chloride values versus field conductivity data has an
intercept on the conductivity axis of 1,494 micromhos/cm (fig. 7), indicating that conductivity
readings of less than that value would theoretically result in negative chloride concentrations.
This anomaly is caused by the fact that at low total-dissolved-solids concentrations (TDS), ions
other than chloride are major contributors to conductivity. As TDS increases, the proportion of
conductance due to chloride ions increases more rapidly than that due to other ions, so that

high values of conductivity can be considered to closely reflect chloride concentrations.

Conductivity and Flow Survey

The highest conductivities recorded during the survey were of waters along the first 7 mi
of the Canadian River below Ute Reservoir. “Baseline” conductivity of river water increased
steadily along the first 6 mi below Ute Reservoir, from <1,000 to >10,000 micromhos/cm (fig. 4;
table 1). River flow also increased along this segment of the river, from ~2.3 cfs just downstream

from the dam (site 8—all apparent surface flows and most canyon wall seeps have joined the



river above this point) to almost 6 cfs (just upstream from the confluence with Revuelto Creek)
(table 3). There were no flowing tributaries along this segment of the river at the time of the
survey, indicating that the added volume must have entered directly by discharge from the
riverbed aquifer.

The trend of increasing conductivity and flow in the first 6 mi downstream from Ute
Reservoir indicates that water in the riverbed alluvium aquifer is of high conductivity. Indeed,
measured conductivities along the first 1.5 mi were highest in slow-moving pool stretches
where turbulence is at a minimum, suggesting that “peak” values (fig. 4; table 1) represent
waters which had entered the river nearby but not yet thoroughly mixed with the river water;
these “peak” values probably reflect the conductivity of the water contained in the riverbed
aquifer. The conclusion that riverbed aquifer water is of high conductivity is further
corroborated by the occurrence of high-conductivity waters in isolated pools in the riverbed
between 3.5 (site 26) and 6.5 mi (site 42) (figs. 1 and 4; table 2); the isolated pools are thought
to represent “windows” into the riverbed aquifer; their chemistries may have been altered by
dilution or by evaporation. It is notable that the measured conductivity within many of the
pools (including pool sections of the river and isolated pools in the riverbed) varied greatly
with placement of the conductivity probe; measured conductivity was generally lowest when
the probe was suspended within the upper part of the water column and highest when the
probe was positioned on or within the sediment on the bottom (tables 1 and 2).

“Baseline” conductivity of the Canadian River decreased substantially (from 10,000 to
5000 micromhos/cm) (fig. 4; table 1) just downstream from its confluence with Revuelto Creek
(approx. mile 6.28, site 40), due to the diluting effect of the added flow from the creek, which
itself carried water of low conductivity (<2,000 micromhos/cm). The overall trend of increasing
river conductivity, however, continues to approximately mile 9.5 (site 46) (figs. 1 and 4).

Conductivity in the Canadian River remained fairly constant between 10 and 20 mi

downstream from Ute Reservoir (sites 46 through 56; figs. 1 and S; tables 1 and 3), whereas



measured flow actually decreased slightly. These observations suggest that there was no inflow
to the river in this stretch and therefore no increase in salinity.

River flow increased dramatically (nearly doubling, from ~12 cfs to more than 21 cfs)
between about 20 and 40 mi downstream from Ute Reservoir (sites 57 through 67) (figs. 1 and
S; table 3). An important observation is that while the river flow did increase dramatically,
conductivity remained fairly constant, implying that the incoming waters must have been
approximately as saline as the river waters (if the incoming waters had not been saline, then
their dilution effect should have caused river conductivity to fall). A small proportion of the
increase in river flow was due to inflow from two tributaries that were flowing at the time of
the survey (unnamed tributary, near mile 24, site 60; and Rana Arroyo, near mile 33, site 64).
The major part of the flow increase, however, must have been contributed by discharge from
the riverbed aquifer. CRMWA staff returned on February 24 and 2§ to collect additional flow
and chemistry data at closely spaced intervals along this segment of the river (between and
including sites 57 to 67). The data from that second survey indicated that most of the increase
occurred along the first half of the river segment (fig. S; table 2); those data also showed that
overall flow volume had decreased since the first survey 11 days earlier. The decrease in flow
was in part due to decreased contributions from some tributaries, but also apparently due to a
decrease of discharge from the riverbed alluvium along that river segment (fig. 5) (between
sites 57 and 67). This pattern suggests that the contributions from the riverbed alluvium were
not strictly baseflow but must have also included some stormflow.

The beginning of the segment along which river flow increased dramatically (between
sites 57 and 67) is also the approximate location of an “outlying” occurrence of high-
conductivity waters (up to 15,500 micromhos/cm) in isolated pools in the riverbed and in
pools in an unnamed, flowing tributary on the south side of the river near mile 24 (site 60)

(figs. 1 and S; table 2).



Between about 40 and 48 mi downstream from Ute Reservoir, conductivity declined, while
river flow increased. This seems to be a normal relationship indicating dilution of through-
flowing river water, with little or no absolute increase in salinity.

River conductivity increased modestly between 48 and 57 mi (sites 68 through 72), while
river flow remained the same, or decreased slightly. This corresponds to the broad, widely
meandering portion of the Canadian River in the vicinity of Nara Visa Arroyo and Horse Creek.
Brune (1981) reports that Salinas Plaza, an early-inhabited area with a “salt lake,” was located on
the north side of the river in the approximate vicinity of Nara Visa Arroyo.

River conductivity declined slightly between 57 and 85 mi (sites 72 through 80), while
river flow increased somewhat. Again, this suggests a normal relationship indicating dilution of
through-flowing river water, with little or no absolute increase in salinity.

Beyond 85 miles and to the end of the survey, river conductivity varied slightly, though
“baseline” conductivity remained approximately the same (~3,000 micromhos/cm).

Notable features along this stretch included:

¢ one isolated, saline pool in the riverbed just upstream from Punta de Agua (with an
apparent corresponding increase in river conductivity);

e substantial inflow from Punta de Agua (causing a slight drop in river conductivity?),
followed by a slight loss of flow between there and the following flow station;

¢ modest conductivities (2,350 micromhos) in pools in Alamosa Creek and Sierrita de la
Cruz;

e very high conductivities (13,000 micromhos) in Lahey Creek and in a seep
immediately upstream from the creek. Although conductivities at these locations were high,
flow was quite low, so that there was little net effect on river conductivity. Nevertheless, these
high conductivities suggest that this is another potential salinity source area; and

¢ modest conductivities (up to 2,300 micromhos) in pools in Tecovas Creek, Horse Creek,

West Amarillo Creek, and East Amarillo Creek.
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Geologic Controls on Hydrology

In the Ute Reservoir area, saline water forced from areas of high head in Permian strata
rises through fine-grained rocks in the upper part of the Permian section and lower part of the
Triassic section, probably along fractures, then enters more permeable sandstone units; from
there the saline water presumably drains into riverbed sediments, and then finally discharges
into the Canadian River. The beginning of the segment of the Canadian River where river flow
begins to increase dramatically (site 57, near mile 21) is approximately the point of the last
occurrence of high-conductivity waters (15,500 micromhos/cm) (fig. S; table 2), with the
exception of the Lahey Creek area about 100 mi further downstream, in Texas. This is also
approximately where the river canyon cuts through the resistant sandstones of the Trujillo
Formation (middle member of Late Triassic Dockum Group) and exposes fine-grained
sandstones and mudstones of the underlying Tecovas Formation (lower member of Dockum
Group) (fig. S). This contact may actually have been crossed by the channel some distance
upstream (0.5 mi, or more), because the bedrock floor of the canyon may be 250 ft below the
surface of the riverbed alluvium. |

The only notable source of high-conductivity waters along the Texas portion of the river
survey is in the vicinity of Lahey Creek (~13,000 micromhos/cm, site 96, near mile 128). This
area is at the upstream end of a segment of the river canyon that exposes Permian bedrock.

Preliminary calculations by CRMWA, based on February 1992 chloride concentration and
flow data, support the conclusion that most of the salt loading of the Canadian River (expressed
in terms of chloride load) occurs within the first 40 mi (table 5), reaching a “plateau” at about
45,000 tons-chloride/yr. Beyond that point (site 67, near the Texas-New Mexico state line), the
chloride load trend remains approximately constant to about 96 mi downstream from Ute

Reservoir (site 86), and then declines to about 80 percent of the maximum value.
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WATER CHEMISTRY

During the salinity survey, 28 water samples were collected from pools alongside the
Canadian River, from tributaries, from seeps, and from the main channel of the river itself. The
sampling was deliberately biased toward collection of waters with high conductivity, as
determined by field measurements. Of the 28 samples, 20 were analyzed for major chemical
constituents (Ca, Mg, Na, K, HCO3 [field determination], SO4, and Cl) and for Br (table 6).

Water quality of analyzed samples ranges from fresh (Cl < 250 mg/L) to highly saline
(C1 > 10,000 mg/L); most of the higher salinity waters were collected from areas in New Mexico
(fig. 8). Similar ratios among major cations and anions in the different samples suggest that the
waters are related; this pattern is reflected in bivariate plots by more or less linear trends of the
data points (figs. 9 and 10). These trends suggest mixing between two different water types,
with mixing products falling between the end members. One end member of this mixing trend
is fresh water derived from meteoric precipitation. The chemistry of this fresh water changes as
it infiltrates the ground, where it interacts with soil and aquifer material before being
discharged to the Canadian River. The other end member is highly saline water derived from
dissolution of halite (mineral composition NaCl), as indicated by molar sodium-to-chloride ratios
(Na/Cl) of approximately 1 in virtually all the analyzed samples, and by Br/Cl weight ratios of
smaller than 0.001 in all but the freshest water samples (fig. 11). Ratios of Na/Cl and Br/Cl have
been used successfully for identification of halite-dissolution brines in other parts of Texas and
in Kansas (e.g., Whittemore and Pollock, 1979; Richter and Kreitler, 1986).

Halite dissolution occurs within evaporite-bearing Permian strata and produces a water
chemistry different from that in overlying Triassic aquifer units (fig. 12a and 12b). Revuelto
Creek, the only large tributary along the 10-mi stretch downstream from Ute Reservoir (where
saline inflows are significant), appears to be influenced by discharge from both Permian and
Triassic units (fig. 12c). At times, Revuelto Creek carries water of low salinity with Na/Cl ratios

that follow a trend typical of Triassic well waters in the area (figs. 12b and 12c). At other times,
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the creek carries water of much higher salinities with Na/Cl ratios that approach 1, which is
typical of halite-dissolution waters encountered within Permian units in the area (figs. 12a and
12¢), suggesting mixing between waters from Triassic and Permian water-bearing units.

The most saline water sample obtained along the Texas portion of the Canadian River
(from site 96a, table 6) contains relatively high concentrations of Ca, Mg, and SOg4, relative to
other samples with similar Na and Cl concentrations (figs. 9 and 10). This sample and others
collected along the Texas portion of the Canadian River show trends in bivariate plots of Ca
versus Cl and of SO4 versus Cl that are distinctly different from those for samples collected
along the New Mexico portion (figs. 13a and 13b). This difference is not the result of different
CaSO4 concentrations, as indicated by the overlap of data points for the two areas in a Ca-
versus-SO4 plot (fig. 13c). Instead, this difference is produced by different amounts of NaCl
added to the water in the two river portions, as indicated in Piper diagrams of major cations and
anions (figs. 14 and 15). Within the group of New Mexico samples, Na makes up 80-95 percent
of all cations and Cl makes up 75-90 percent of all anions (fig. 14), whereas in the group of
Texas samples respective ranges amount to only 70-8S percent and 60-75 percent (fig. 15).
Thus, either NaCl is a more dominant contributor to ion concentration in the New Mexico
portion of the river than in the Texas portion, or dilution of halite-dissolution brine by fresher
sulfate dominated water (before it enters the river) is more dominant in Texas than in New
Mexico.

Samples collected during this river survey appear representative of Canadian River water
in general, as the data reported here are similar to those for samples collected during previous
surveys of the New Mexico portion of the river and from sampling stations in Texas near
Tascosa and Amarillo (fig. 16). Previous data also show the apparent difference in Ca-Cl and SO4-
Cl plots between samples from the New Mexico reach and samples from the Amarillo sample
station, supporting the view that inflow of the halite brine is more dominant in the New
Mexico part of the Canadian River than in the Texas part. Magnesium concentrations appear

atypically high for reasons that are unclear at this time. Data from the February 1992 survey are
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also consistent with chemical data on samples of shallow ground-water collected from
piezometers in the Canadian River alluvium (fig. 17), indicating that the saline waters in
isolated pools, tributaries, seeps, and in the main channel itself have the same origin as the

shallow saline ground water in the river alluvium.

CONCLUSIONS

The main contributor of solutes to the Canadian River through its history has been the
Permian San Andres Formation, as evidenced by the dissolution of nearly 700 ft of halite from
areas beneath the Canadian River Valley (figs. 2 and 3; plates 1 and 2). A significant amount of
NaCl was also contributed by dissolution of halite from mixed halite-siliciclastic beds and
discrete halite beds in the Artesia Group beneath and as far south as 20 mi from the Canadian
River (fig. 2; plate 1).

Results of the February 1992 water quality survey suggest two principal areas where saline
waters presently enter the Canadian River: (1) along the first 9 or 10 mi downstream from Ute
Reservoir (figs. 1 and 4); and (2) between 20 and 40 mi downstream from Ute Reservoir
(between sites S7 through 67) (figs. 1 and S). Both of these segments of the river are within
New Mexico. Moderately high conductivities were also encountered in the vicinity of Lahey
Creek in Texas (site 96, near mile 128; fig. 1); however, inflow from the creek and from seeps
in the area at the time of the survey were insignificant relative to inflows in the other salini'ty
source areas, suggesting that this area is not a major contributor to Canadian River salinity
(compare data in tables 1-4). Preliminary calculations by CRMWA, based on February 1992
chloride concentration and flow data, confirm the conclusion that most of the salt loading of
the Canadian River occurs within the first 40 mi (table S), reaching a “plateau” at about
45,000 tons-chloride/yr.

Laboratory chemical analyses suggest that saline waters in the Canadian River valley

evolved by mixing of fresh water derived from meteoric precipitation and highly saline water
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derived from dissolution of halite at depth. The most saline water sample obtained along the
Texas portion of the Canadian River (from site 96a, table 6) contains relatively high
concentrations of Ca, Mg, and SOyq, relative to other samples with similar Na and Cl
concentrations (figs. 9 and 10). This difference in water chemistry may reflect differences in
flow paths through the dissolution zone in the New Mexico and Texas portions of the
Canadian River. Flow paths in New Mexico may extend deep into the dissolution zone where
halite is present, whereas flow paths in Texas may be more restricted to the upper part of the
dissolution zone where anhydrite, gypsum, and dolomite remain but halite may have already
been dissolved or perhaps was originally less abundant.

If halite dissolution is continuing along the same trends and by the same processes as in
the past, then the focus of modern dissolution is along a front at a depth of about 1,100 ft
beneath the Canadian River in the Ute Reservoir area and extending in the subsurface some
10 mi south of the Canadian River at depths of 1,000 ft below land surface (fig. 2; plate 1). A
future program of drilling, sampling, and analysis of waters from various areas and depths would

provide useful data to help test these hypotheses.
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Figure 1. Locations of measurement stations along the Canadian River between Ute Reservoir, New
Mexico, and Lake Meredith, Texas, conductivity survey, February 1992.
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Figure 1. (cont.)
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Figure 2. North-south structural cross section A-A’ through the Ute Dam area (see also plate 1).
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Figure 3. East-west structural cross section B-B’ through the Ute Dam area (see also plate 2).
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Figure 4. Plot of conductivity (scale on left) and flow (scale on right) along first 10 mi of Canadian River below
Ute Reservoir, New Mexico; measurements taken in field on 2/10, 2/11, and 2/12/92 (see tables 1-4 for data). The
exposed bedrock in canyon walls along this stretch of the river canyon consists almost entirely of fluvial channel
sandstones of the Triassic Trujillo Formation; the bedrock floor of the canyon may be as deep as S0 ft below the
surface of the alluvium.
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Figure S. Plot of conductivity (scale on left) and flow (scale on right) along entire length of Canadian River
survey, between Ute Reservoir, New Mexico, and Lake Meredith, Texas; measurements taken in field 2/10
through 2/18/92 (main survey), and 2/24 and 2/25/92 (detailed survey between sites 57 and 67, inclusive)
(see tables 1-4 for data). The exposed bedrock in the canyon walls along the various stretches of the river is

indicated at the top of the plot.
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Figure 6. Comparison between chloride content determined in the field and

chloride content determined in the laboratory for February 1992 river-survey
samples.
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Figure 8. Chloride concentration in river-survey samples collected between Ute
Reservoir, New Mexico, and Lake Meredith, Texas, February 1992.
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Figure 9. Bivariate plots of Ca, Mg, and K versus Cl for river-survey samples.
The plots suggest mixing trends between low-Cl and high-Cl waters.
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Figure 11. Constituent plots of (a) Na versus Cl and (b) Br/Cl versus Cl
for river-survey samples. The plots suggest halite dissolution as the major

source of salinity.

31



Na (mmol/L)

1500

1000 4

500 -

Na (mmol/L)

Triassic [

Permian
500 1000 1500 40 60 80 100
Cl (mmolil) Cl (mmolL) [
100 1
80 4
—~ Permian
g L. Trend
604 Triassic s/
€ | Trend p
s oF
40 4 *‘(‘
1 V]
20 4 f
Revuelto Creek
° b | v T ¥ T v T v T v T
0 20 40 60 80 100
Cl (mmol/l) QA20323%

Figure 12. Comparison among water samples from (a) wells producing from Permian
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Water salinity in Revuelto Creek is low when flow is dominated by discharge of
water from Triassic formations; salinity is high when flow is dominated by contribu-
tions from Permian water-bearing units (data from Hydro Geo Chem, Inc., 1984).
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Figure 13. Bivariate plots of Ca, SO4, and Cl for river-survey samples. The plots differentiate
between samples collected in New Mexico (solid dots) and those collected in Texas (open
circles). Samples from the Texas reach typically exhibit larger Ca/Cl and SO4/Cl ratios than do
samples from the New Mexico portion of the river.
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Sample
no. TDS |Well no.
1 762 | #0
2 5411 #7
3 2158 | #8
4 4047 | #11
] 3847 | #13
6 4317 | #17
7 38751 #27
8 7185 | #31
9 45842 #34
10 1819 | #40
11 11922| #41a
12 14760| #60
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Figure 14. Piper diagram of river samples collected along the New Mexico portion of the Canadian River.
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Sample
no. TDS |Well no.
1 3783 | #76
2 2511 | #82
3 §271 | #84a
4 3177 | #84b
5 758 #85
6 1027 | #92
7 11548| #96a
8 2884 | #98
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Figure 15. Piper diagram of river samples collected along the Texas portion of the Canadian River.
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Figure 16. Comparison between February 1992 river-survey data (solid dots) and data from previous investiga-
tions in New Mexico (open squares), at Tascosa, Texas (open triangles) and at Amarillo, Texas (open circles)
(previous data from Hydro Geo Chem, 1984).
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Figure 17. Comparison between February 1992 river-survey data (solid dots) and data from piezometers
collected during previous investigations (open circles) (previous data from U.S. Bureau of Reclamation, 1984).
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